2022高考数学为什么难 2022年高考数学必考知识点有哪些
推荐答案
试题高度灵活多变,低效率大量刷题没有效果。
虽然高考试题命题始终坚持稳中有变的原则,似乎稳定是主流,其实变化无处不在。高考题总会不按套路出牌,专门挑战学生的定式思维,所以如果平时记了很多解题模板,高考时却很难用上。
高考命题坚持能力立意的原则,也就是题目必须要考查学生真正的学科能力,考查学生能否把基础知识灵活运用。而这里所说的能力,指的是学生对基础知识的深入理解,吃透本质,懂得规律,这自然是个很高的要求。
埋头刷题,看似掌握了很多套路,高考题却总会出现全新的设问方式。因此,我的建议是做题要注重质量,少而精,通过做题提高能力,比如努力做到举一反三。
其他回答
2022年高考数学必考知识点有哪些高考数学有哪些必考知识点,哪些考点容易出题?我为同学们带来一些高考数学必考点,希望大家注意!
2022年高考数学高频考点有哪些
高考数学主要知识点
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
2022年的高考数学到底有多难?主要体现在哪些方面呢?
2022年高考数学相对来说是比较难的,据说好多人出了考场之后都崩溃得大哭,毕竟准备了这么久,但是数据实在是太难了。也有网友开玩笑的说这次的试卷简直是韦神附体,但是我本人却没有韦神附身的能力。虽然说试卷比较难,但是要难的话大家都难,因此也希望考生们能够佛系的对待数学,争取在后两场的考试中大放异彩。
一、数学试卷比较难。高考向来是一个让人们关注度比较高的话题,今年的高考也不例外。往年考完试之后我们比较关注的是作文的题目,但是没有想到今年的数学却登上了热搜。根据考生的反馈说今年的数学试卷真的是太难了,很多人出了考场之后就崩溃大哭。毕竟十年寒窗苦读,就等着金榜题名了,没想到被数学卡了壳。也有网友用积极的心态形容了这次数学有多难。
二、网友形容数学的难度。如果单纯的说数学太难,可能我们还想不到怎么个难,也有考生贴心的帮我们形容了一下,高数试卷犹如韦神附体,但是我却没有韦神附身的能力;还有人说,文科生看做理科生,理科生看做华罗庚;更有甚者,觉得这次的数学试卷不会又是葛军出的话,建议把这个人关起来吧。不过玩笑归玩笑,这也让我们从侧面了解了数学是真的难。
三、积极准备后两门的考试。虽然说数学比较难,但我们还是希望考生能够积极的对待这次的考试。试卷出的太难大家都难了,相对来说分数线也会降低。但是第二天还有文综,理综和英语的考试,所以考生们应该以积极的心态,对待后两门的考试,一定要放平心态,努力的发挥出自己的正常水平,无愧于自己的十年寒窗苦读。
2022高考数学为什么那么难
2022年的高考数学是非常难的,比如说某高三老师拿到了数学卷子,把整张卷子做完花了了100分钟,而高考数学的时间才120分钟。该老师说这张卷子并没有一些偏题怪题,但是计算量是非常大的,并且一些知识点相对来说很冷门,非常打压那些靠刷题以及题海战术来学习数学的学生。不过世界上天才类的学生是比较少的,大部分学生都是靠刷题的,所以他们在做数学卷子的时候就没有办把把题目做对。并且有些学生的计算能力也不是特别的好,根本没有办法在规定的时间内把题目给完全做完,只能被迫放弃一些很难的题,转而去选择一些比较简单的题。
在考完数学之后网络上是一片唉声叹气,而现实中的学生也是愁眉苦脸的,根本就不想说话,因为数学卷实在是太难了。特别是浙江的数学卷子是男上加男,因为网友说终于理解为什么朋友不想参加,就算高考而是直接出国,实在是没有办法取得很好的成绩,也没有办法去上心仪的院校。
这名老师是专业的数学老师,却花了这么长时间去做题,平常的时候肯定也用了很多的时间去练习自己的计算能力,而普通的学生不仅要学好数学,还要学好剩下的5门课程,根本就没有办法在两个小时之内得到比较好的成绩。还有网友分享了自己的经历,称其是今年的考生手写字是比较慢的,但其数学思维能力非常的好,在考试的时候能够拿到120加的分数,但却在这次的高考中崩溃了,题型和做过的完全不一样,考试的时候是非常焦虑的,估计只能考85分左右。
数学卷子如此难,可能就是在筛选高考生,只能让一部分的学生上大学。
2022高考数学必考知识点考点总结大全
2022年高考数学为什么那么难的情况如下可供参考:
一、数学难的本质
1,今年高考数学难,只是表象,要看到事物本质,它传递了什么信号?面对“双减”和新高考要求,学校和家长该怎么做?今年的高考数学,大家认为比较难。有人说,义务教育搞“双减”,高中教育在搞“双增”;
2,对于这样的评论,要理性判断,因为高考从本质上讲,他是一个国家基于高位人才的高位培养和高位成长,它必须要强调选拔性,而这种选拔性的指向就是创新型人才;
3,比如在科技领域,有35种技术被以美国为代表的西方“卡脖子”,我们怎么从这种境况下走出来,是需要创新人才的。
4,创新人才有很多的标识,但是数学肯定是基础之一。因此给数学以适当的难度,是可以理解的,今年的数学卷还发出一个新的信号,就是过度基于现在的题海去应试,去做题,去扒分,在高考中并不是有效的;
5,而是要倡导怎样用数学知识,数学思维去解决一些活的问题。这些问题的解决是得分的基本来源,这些事实都在表明,对“双减”政策,对高考的新要求,要看到事物本质:教育在变天。要回归孩子的天性,回到孩子成长的本真上。
二、高考命题导向教学
1,如今高考命题以《中国高考评价体系》为依据,各学科核心素养是关键。不能以为这只是喊喊口号,大家还是搞应试教育,题海战术。今年的数学就给了大家当头棒喝,非常酸爽;
2,数学命题设计创新一下,一些问题反套路一下,开放一点,灵活一点,选拔性高一点,没有考纲,只有课标,素养导向,这些变化早就有预示。应对这些变化,更需要我们在平时的教学中通过具体的数学问题情境,扎扎实实,真真切切的感悟,理解核心素养;
3,必须改变原有的教学“坏习惯”:对于教材,我们有时处理的过于粗糙,只求早点把结果教出来,之间过程,来龙去脉渗透的研究方法,数学思想,得不到足够的重视,挖掘不够。很多时候,练习也缺乏甄选,试卷狂轰滥炸,很多却重复重复,学生疲于应付,来不及思考。
4,前车之鉴,显然我们现在的教学值得反思和优化。高中数学教学中的关键问题,简单来说,两个大方向,计算是童子功,逻辑推理是命根子。计算是常规,得重视,逻辑推理贯穿数学问题的解决,要持之以恒,潜移默化;
5,课堂之中,在解读知识,解题的教学活动中,延申问题本质,增加锻炼。多设计学生参与的环节,鼓励他们成为课堂主角,以部分优异带动整体氛围,以学生之口代替教师之口,把课堂变成学生施展才华的空间,而不是教师的“报告会”。
数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了.接下来是我为大家整理的2022高考数学必考知识点考点 总结 大全,希望大家喜欢!
目录
2022高考数学必考知识点考点
高考数学必背知识
如何提高高考数学成绩
2022高考数学必考知识点考点
一、集合、简易逻辑(14课时,8个)
1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)
1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)
1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)
1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)
1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)
1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
九、直线、平面、简单何体(36课时,28个)
1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
十一、概率(12课时,5个)
1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样 方法 ;4.总体分布的估计;5.正态分布;6.线性回归。
十三、极限(12课时,6个)
1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。
十四、导数(18课时,8个)
1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。
十五、复数(4课时,4个)
1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。
>>>
高考数学必背知识
1、圆的定义:
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有
(2)过圆外一点的切线:
①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:
通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
分层的比例问题
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
>>>
如何提高高考数学成绩
有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。打个比喻:有很多人,因为工作的需要,几乎天天都在写字。结果,写了几十年的字了,他写字的水平能有什么提高吗?一般说,他写字的水平常常还是原来的水平。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结 反思 ,水平才能长进。
错题本和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。
一些考生不能正确解答问题,往往都是审题不仔细,匆匆忙忙看完题目,在题目条件没有吃透情况下就匆匆下笔解题,自然无法正确解决问题。
解题,第一步就是要认真审题,提高对审题的重视,戒掉急于下笔的毛病,吃透题目当中每一个条件和结论,这样才能发现题目中的隐含条件,找到解题思路,降低因审题不仔细造成的解题出错。
永远记住,适当慢一点,学会耐心仔细去审题,准确地把握题目中的关键词与“量”,从题目中挖掘尽可能多的信息,才能找到正确解题方向。
>>>
2022高考数学必考知识点考点总结大全相关 文章 :
★ 学习方法指导与技巧总结
★ 政治高考必背知识点总结与归纳
★ 2022高三数学知识点
★ 高考生物必备大题知识点归纳
★ 高三上册数学教学总结2022最新
★ 2022高三数学知识点整理
★ 2022高考政治必背知识重点归纳
★ 高三数学期末知识点
★ 2022高考物理知识点归纳总结
★ 高三文科数学常考知识点整理归纳
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?a16caac520b9e58c9a9652b27953e5ae"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();